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 ABSTRACT 

This study explores the application of Convolutional Neural 

Networks (CNNs) for software defect prediction, highlighting 

promising performance metrics while addressing critical 

challenges such as data imbalance, noise, and model 

interpretability. Despite achieving high precision for non-faulty 

instances, the models struggled with accurately identifying faulty 

components, underscoring the need for balanced F1-scores. 

Solutions proposed included SMOTE for data imbalance and 

noise reduction techniques like outlier detection. Optimization 

efforts focused on hyperparameter tuning and architecture 

refinement to enhance model robustness. Limitations included 

computational complexity and the interpretability of CNNs. 

Practical implications for software engineering involve improving 

defect detection to enhance software quality and efficiency. The 

implementation of CNNs demonstrated commendable precision 

and recall metrics for non-faulty instances, indicating a robust 

capability to identify correctly functioning software components. 

However, the models encountered difficulties in accurately 

detecting faulty instances, as reflected in lower recall rates and a 

notable number of false negatives. One of the primary challenges 

identified was the inherent imbalance in the dataset, where non-

faulty instances significantly outnumbered faulty instances. This 

disparity skewed predictions towards the majority class, thereby 

reducing the model's effectiveness in identifying faults accurately. 

Proposed solutions included Synthetic Minority Over-sampling 

Technique (SMOTE) and Adaptive Synthetic Sampling 

(ADASYN) to rectify this imbalance and improve model 

performance. Addressing noise, such as outliers and irrelevant 

data points, emerged as another critical area for enhancing model 

robustness. 

Keywords: CNNs, Software Defect Prediction, Data Imbalance, Noise 

Reduction, Interpretability, Precision, Recall, SMOTE, Outlier 

Detection, Hyperparameter Tuning. 
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1. INTRODUCTION 

Software defect prediction is a crucial practice aimed at identifying and addressing potential flaws in 

software before its release. This proactive approach can significantly reduce development costs, 

enhance user satisfaction, and improve overall software quality [1]. By predicting where defects are 

likely to occur, development teams can focus their testing efforts, allocate resources more effectively, 

and conduct targeted code reviews, leading to more reliable and robust software. 

Key Elements of Software Defect Prediction 

1. Metrics and Features: To predict defects, various metrics and features from the software code 

are utilized. These include code complexity, code churn (changes made to the code), code 

size, and historical defect data. These metrics are essential as they provide insights into the 

potential risk areas within the software [2-5]. Machine learning models use these metrics as 

inputs to identify patterns and trends that can forecast where defects are most likely to occur. 

2. Machine Learning Algorithms: Predictive models are developed using various machine 

learning techniques such as neural networks, decision trees, and support vector machines. 

These algorithms analyze complex datasets to uncover patterns and relationships that might 

not be immediately apparent [6-10]. By training on historical data, these models can estimate 

the probability of defects in specific code modules or components, thus guiding where testing 

should be focused. 

3. Data Preprocessing: Before data is fed into machine learning models, it undergoes 

preprocessing. This involves cleaning the data, handling missing values, and normalizing 

features to ensure that the data is of high quality [11-14]. Proper preprocessing is critical as it 

helps maintain the reliability and effectiveness of the predictive models. 

4. Training and Testing: The predictive models are trained using historical data to learn patterns 

associated with defects. Once trained, these models are tested on new, untested code to 

evaluate their ability to generalize and accurately predict defects in unseen code [15-19]. This 

step is crucial to ensure that the models are not overfitted to the training data and can perform 

well in real-world scenarios. 

5. Validation and Evaluation: To assess the effectiveness of defect prediction models, several 

evaluation metrics are used, including precision, recall, F1 score, and the area under the 

receiver operating characteristic (ROC) curve [20-23]. These metrics help determine how 

well the model identifies defective code while minimizing false positives and false negatives. 

High precision and recall rates are desirable as they indicate that the model is effective at 

predicting defects with minimal errors. 

6. Integration into Development Workflow: Successful defect prediction models are integrated 

into the software development process. They assist development teams during the quality 

assurance phase by highlighting high-risk areas that need more rigorous testing [24-28]. This 

integration helps in strategically allocating resources, prioritizing testing efforts, and ensuring 

that critical areas receive the necessary attention. 
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7. Continuous Improvement: Defect prediction is an iterative process. As new data becomes 

available and the software evolves, models need to be regularly retrained and refined to 

maintain their effectiveness. Continuous improvement ensures that the models adapt to 

changes in the software and remain relevant in predicting defects. 

Role in the Testing Phase of SDLC 

During the Testing Phase of the Software Development Life Cycle (SDLC), defect prediction plays a 

vital role. It helps identify which modules are most likely to contain errors and therefore require 

more detailed testing [29-33]. By focusing on these high-risk areas, development teams can use their 

resources more efficiently and adhere to project constraints. While predicting defect-prone modules 

can be challenging, accurate predictions can significantly reduce the costs associated with defect 

detection and correction [34-36]. Automated tools that accurately forecast defect locations and guide 

testing efforts have the potential to save substantial amounts of money annually and improve overall 

software quality. 

2. REVIEW OF LITERATURE 

Zain et.al., (2022). Developing successful software with no defects is one of the main goals of 

software projects. In order to provide a software project with the anticipated software quality, the 

prediction of software defects plays a vital role. Machine learning, and particularly deep learning, 

have been advocated for predicting software defects, however both suffer from inadequate accuracy, 

overfitting, and complicated structure. In this paper, we aim to address such issues in predicting 

software defects. We propose a novel structure of 1- Dimensional Convolutional Neural Network 

(1D-CNN), a deep learning architecture to extract useful knowledge, identifying and modelling the 

knowledge in the data sequence, reduce overfitting, and finally, predict whether the units of code are 

defects prone. We design large-scale empirical studies to reveal the proposed model’s effectiveness 

by comparing four established traditional machine learning baseline models and four state-of-the-art 

baselines in software defect prediction based on the NASA datasets. The experimental results 

demonstrate that in terms of f-measure, an optimal and modest 1DCNN with a dropout layer 

outperforms baseline and state-of-the-art models by 66.79% and 23.88%, respectively, in ways that 

minimize overfitting and improving prediction performance for software defects. According to the 

results, 1D-CNN seems to be successful in predicting software defects and may be applied and 

adopted for a practical problem in software engineering. This, in turn, could lead to saving software 

development resources and producing more reliable software. 

Rathore et.al., (2022). Imbalanced software fault datasets, having fewer faulty modules than the 

nonfaulty modules, make accurate fault prediction difficult. It is challenging for software 

practitioners to handle imbalanced fault data during software fault prediction (SFP). Earlier, several 

researchers have applied oversampling techniques such as synthetic minority oversampling 

techniques and others for imbalanced learning in SFP. However, most of these techniques resulted in 

overfitted prediction models. This article presents generative oversampling methods to handle 
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imbalanced data problems in the SFP. Using the generative adversarial network (GAN) based 

approach, the presented methods generate synthetic samples of the faulty modules to balance the 

proportion of faulty and nonfaulty modules in the fault datasets. Further, SFP models are built on the 

processed fault datasets using different machine learning techniques. 

Farid et.al., (2021). In recent years, the software industry has invested substantial effort to improve 

software quality in organizations. Applying proactive software defect prediction will help developers 

and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional 

software defect prediction models concentrate on traditional features of source code including code 

complexity, lines of code, etc. However, these features fail to extract the semantics of source code. In 

this research, we propose a hybrid model that is called CBIL. CBIL can predict the defective areas of 

source code. It extracts Abstract Syntax Tree (AST) tokens as vectors from source code. Mapping 

and word embedding turn integer vectors into dense vectors. Then, Convolutional Neural Network 

(CNN) extracts the semantics of AST tokens. 

Wang, T., & Li, W. H. (2010). While there was much disagreement over the usefulness of 

employing static code features to train a defect predictor, software defect predictions were 

undeniably a powerful tool for increasing testing productivity and software quality. Defect forecasts 

had previously included a number of data mining techniques. A defect predictor based on Naive 

Bayes theory was found to exist in several forms, and the difference estimate technique and 

algorithm complexity of each version were examined. By completing prediction performance 

assessment, Multivariants Gauss Naive Bayes (MvGNB) was determined to be the best. Next, this 

model was contrasted with the J48 decision tree learner. It was concluded from experiment findings 

on MDP benchmarking datasets that MvGNB would be helpful for fault predictions. 

Wang et.al., (2010). Many data mining applications relied heavily on feature selection since it was 

realized that using a single technique for subset selection might result in local optima. As a 

countermeasure, feature selection method ensembles were investigated, with the goal of integrating 

many approaches instead of depending on one. A comprehensive empirical investigation was carried 

out that looked at 17 different ensembles of feature ranking algorithms, including the signal-to-noise 

filter, 11 threshold-based techniques, and six commonly used methods. With 16 real-world software 

measurement datasets of different sizes, 13,600 classification models were built by the research.  

Zheng, J. (2010). In order to anticipate software defects, the research examined the performance of 

three cost-sensitive boosting algorithms. Its main objective was to categorize software modules into 

classes that were prone to defects and those that were not. The high expense of incorrectly 

categorizing defective modules as opposed to non-defective ones was the goal of these techniques. 

The first approach improved the accuracy of identifying modules that were prone to defects by 

adjusting the classification threshold via the use of threshold moving. The threshold moving 

approach was shown to be the best appropriate for building cost-sensitive software defect prediction 

models via evaluation utilizing NASA project datasets, especially for projects that were produced 

using object-oriented language. 
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Khoshgoftaar et.al., (2010). Choosing the best characteristics for machine learning and dealing with 

unbalanced data presented difficulties for the data mining and machine learning communities. This 

research presented a procedure incorporating feature selection and data sample approaches. It was 

focused on the software engineering sector, specifically software quality prediction. In order to 

identify and model features for software defect prediction, four scenarios involving the comparison 

of original and sampled data were investigated. Defect prediction models showed consistent 

performance regardless of whether training data was original or sampled, according to case study 

results using nine software measurement datasets. Models based on feature selection from sampled 

data outperformed those based on original data. 

Yan et.al., (2010). By using software metrics to anticipate the number of defects in software 

modules, regression methods were used to improve the quality of the program. A unique approach to 

estimating software defect counts was presented in the study: the use of fuzzy support vector 

regression (FSVR). The regressor's fuzzification input demonstrated proficiency in managing 

datasets with imbalanced software metrics. Based on experiment findings with the MIS and 

RSDIMU datasets, a comparative study with the support vector regression technique showed that 

FSVR offered reduced mean squared error and greater accuracy in forecasting the total number of 

defects for modules with a considerable defect load. 

Table 2.1: Systematic Reviews and Methodology 

Author(S) 

And Year 

Research Key Methodology Findings 

Wang, T., & 

Li, W. H. 

(2010) 

Software defect prediction 

using static code attributes 

Analyzed various versions of 

Naive Bayes-based defect 

predictors and compared 

Multivariants Gauss Naive 

Bayes (MvGNB) with the 

decision tree learner J48 

using benchmarking datasets 

MvGNB was found to be the 

most effective for defect 

prediction, improving 

software quality and testing 

efficiency 

Wang et.al., 

(2010) 

Feature selection in data 

mining applications 

Conducted an empirical 

study examining 17 

ensembles of feature ranking 

techniques using 16 software 

measurement datasets, 

resulting in 13,600 

classification models 

Ensembles with very few 

rankers were more effective 

than those with many or all 

rankers, highlighting the 

effectiveness of ensemble 

methods 

Zheng, J. 

(2010) 

Cost-sensitive boosting 

algorithms for software 

defect prediction 

Investigated three cost-

sensitive boosting algorithms 

focusing on misclassification 

costs using NASA project 

datasets 

Threshold-moving algorithm 

was most suitable for cost-

sensitive software defect 

prediction, especially for 

object-oriented projects 
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Khoshgoftaar 

et.al., (2010) 

Feature selection and data 

sampling in software 

defect prediction 

Explored four scenarios 

comparing original and 

sampled data for feature 

selection and modeling using 

nine software measurement 

datasets 

Models constructed using 

feature selection from 

sampled data consistently 

outperformed those based 

solely on original data, 

demonstrating robust 

performance in defect 

prediction. 

Yan et.al., 

(2010) 

Enhancing software 

quality using regression 

techniques 

Proposed Fuzzy Support 

Vector Regression (FSVR) 

for predicting software 

defect numbers, comparing it 

with support vector 

regression using MIS and 

RSDIMU datasets 

FSVR yielded lower mean 

squared error and higher 

accuracy in predicting defect 

numbers for modules with 

substantial defect loads 

 

Rawat and Dubey (2012) Certain faults were inevitable throughout software development, despite 

careful planning, comprehensive documentation, and efficient process management; this eventually 

resulted in a drop in quality and possible project failure. Even though it cost a lot of money, 

deliberate efforts were necessary to regulate and limit flaws in the competitive environment of the 

time. It also demonstrated how several defect prediction algorithms were put into practice and how 

successful they were in lowering the total number of faults. 

Ma et.al., (2012). Models trained on cross-company data received less attention than within-company data 

when it came to software fault prediction. There were difficulties in translating within-company models into 

real-world situations since there were few local data repositories. A new technique for cross-company defect 

prediction called Transfer Naive Bayes (TNB) was devised when it was realized that transfer learning may 

help close this gap. In contrast to earlier methods, TNB estimated test data distribution and transferred cross-

company data insights into weighted training instances by using information from all relevant characteristics 

in the training data. The experiments were carried out on a variety of datasets from NASA and Turkish 

software repositories. The research came to the conclusion that when local training data is scarce, using 

information from various distribution training data at the feature level may be helpful. This presents a 

potential way to maximize resource allocation in software testing procedures and lower related expenses. 

Li et.al., (2012). Predicting software defects was thought to be a useful tool for improving our comprehension 

and management of software quality; nevertheless, most approaches relied on project history. However, 

effective defect prediction was hampered by the lack of such data for new projects and certain businesses. In 

order to address this, the study suggested sample-based approaches and supported the testing and selection of 

a tiny proportion of modules inside complex software systems. There was a description of three approaches 

for selecting samples: The study presented ACoForest, a unique active semi supervised learning technique that 

selects modules most useful for creating a reliable prediction model. The usefulness of these approaches was 

shown by experimental findings using PROMISE datasets, indicating that they may find use in industrial 

practice. 

 

http://www.ijamsr.com/


Vol 6, Issue 11, 2023   Impact Factor: 5.355    DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914 

           

 

 
IJAMSR  6 (11)                               November 2023                         www.ijamsr.com                32 

International Journal of  

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281 

Sun et.al., (2012). In the past, there has been a lot of interest in the use of classification techniques to 

forecast software error proneness using static code properties. Software defect data's intrinsic 

classimbalance posed a significant difficulty, which led to the use of a number of techniques 

including cost-sensitive learning, boosting, bagging, and sampling to address it. But because of 

changes in the initial data distribution, these traditional methods often ran into issues including 

overfitting, unanticipated mistakes, and the loss of important information. In response, the study 

introduced a novel methodology that initially transformed imbalanced binary-class data into balanced 

multiclass data, followed by the implementation of a specific coding strategy to develop a defect 

predictor. Experimental results, conducted across 14 NASA datasets using four classification 

algorithms, three data coding schemes, and six common imbalance data handling techniques, 

indicated that the new approach generally outperformed others, particularly when employing a one-

against-one coding scheme. 

Pelayo, L., & Dick, S. (2012). Several studies have employed machine learning techniques to tackle 

the challenge of predicting software defects based on software metrics. But as a result of skewness in 

defect prediction datasets, predictions for the minority defective class were often less accurate—a 

problem referred to as "learning from imbalanced datasets." Using Analysis of Variance on a variety 

of datasets, this paper examined two important stratification options (under and oversampling) for 

software fault prediction. Under sampling had a significant main impact and an interaction effect 

with oversampling, both at α = 0.05, according to the research, but oversampling did not have a 

significant main effect. The results advance our knowledge of efficient stratification strategies for 

resolving class imbalance in software fault prediction. 

 

3. CONCLUSION AND FUTURE SCOPE 
 

This work is a major step toward the prediction of software defects using deep learning methods, 

particularly CNNs. Although the models showed encouraging performance metrics and indicated 

how they may be used in software engineering, issues like noise, unbalanced data, and 

interpretability of the model still need to be further investigated and improved. For defect prediction 

models to become more dependable, scalable, and applicable in actual software development 

settings, these issues must be resolved. We can clear the way for more precise, effective, and 

significant software defect prediction solutions by advancing methods, working across disciplines, 

and developing and improving current procedures. 

By means of this thorough study, we add to the current conversation on the nexus between software 

engineering and machine learning, hoping to provide practitioners with knowledge and instruments 

that improve software development and quality. The development of deep learning in software defect 

prediction has the potential to completely change the way we approach software maintenance and 

quality assurance in the future, eventually producing more reliable and robust software systems. 
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