
Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 27

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Enhancing CNNs for Software Defect Prediction: Addressing Imbalance

and Noise

Deshmukh Pankaja Rajebhau 1, Dr. Satish Narayan Gurjar 2

1 Research Scholar, Dept. Of Computer Science, University of Technology, Jaipur
2 Dept. Of Computer Science, University of Technology, Jaipur

Email: Pankajadeshmukh@Gmail.Com

 ABSTRACT

This study explores the application of Convolutional Neural

Networks (CNNs) for software defect prediction, highlighting

promising performance metrics while addressing critical

challenges such as data imbalance, noise, and model

interpretability. Despite achieving high precision for non-faulty

instances, the models struggled with accurately identifying faulty

components, underscoring the need for balanced F1-scores.

Solutions proposed included SMOTE for data imbalance and

noise reduction techniques like outlier detection. Optimization

efforts focused on hyperparameter tuning and architecture

refinement to enhance model robustness. Limitations included

computational complexity and the interpretability of CNNs.

Practical implications for software engineering involve improving

defect detection to enhance software quality and efficiency. The

implementation of CNNs demonstrated commendable precision

and recall metrics for non-faulty instances, indicating a robust

capability to identify correctly functioning software components.

However, the models encountered difficulties in accurately

detecting faulty instances, as reflected in lower recall rates and a

notable number of false negatives. One of the primary challenges

identified was the inherent imbalance in the dataset, where non-

faulty instances significantly outnumbered faulty instances. This

disparity skewed predictions towards the majority class, thereby

reducing the model's effectiveness in identifying faults accurately.

Proposed solutions included Synthetic Minority Over-sampling

Technique (SMOTE) and Adaptive Synthetic Sampling

(ADASYN) to rectify this imbalance and improve model

performance. Addressing noise, such as outliers and irrelevant

data points, emerged as another critical area for enhancing model

robustness.

Keywords: CNNs, Software Defect Prediction, Data Imbalance, Noise

Reduction, Interpretability, Precision, Recall, SMOTE, Outlier

Detection, Hyperparameter Tuning.

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 27

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

1. INTRODUCTION

Software defect prediction is a crucial practice aimed at identifying and addressing potential flaws in

software before its release. This proactive approach can significantly reduce development costs,

enhance user satisfaction, and improve overall software quality [1]. By predicting where defects are

likely to occur, development teams can focus their testing efforts, allocate resources more effectively,

and conduct targeted code reviews, leading to more reliable and robust software.

Key Elements of Software Defect Prediction

1. Metrics and Features: To predict defects, various metrics and features from the software code

are utilized. These include code complexity, code churn (changes made to the code), code

size, and historical defect data. These metrics are essential as they provide insights into the

potential risk areas within the software [2-5]. Machine learning models use these metrics as

inputs to identify patterns and trends that can forecast where defects are most likely to occur.

2. Machine Learning Algorithms: Predictive models are developed using various machine

learning techniques such as neural networks, decision trees, and support vector machines.

These algorithms analyze complex datasets to uncover patterns and relationships that might

not be immediately apparent [6-10]. By training on historical data, these models can estimate

the probability of defects in specific code modules or components, thus guiding where testing

should be focused.

3. Data Preprocessing: Before data is fed into machine learning models, it undergoes

preprocessing. This involves cleaning the data, handling missing values, and normalizing

features to ensure that the data is of high quality [11-14]. Proper preprocessing is critical as it

helps maintain the reliability and effectiveness of the predictive models.

4. Training and Testing: The predictive models are trained using historical data to learn patterns

associated with defects. Once trained, these models are tested on new, untested code to

evaluate their ability to generalize and accurately predict defects in unseen code [15-19]. This

step is crucial to ensure that the models are not overfitted to the training data and can perform

well in real-world scenarios.

5. Validation and Evaluation: To assess the effectiveness of defect prediction models, several

evaluation metrics are used, including precision, recall, F1 score, and the area under the

receiver operating characteristic (ROC) curve [20-23]. These metrics help determine how

well the model identifies defective code while minimizing false positives and false negatives.

High precision and recall rates are desirable as they indicate that the model is effective at

predicting defects with minimal errors.

6. Integration into Development Workflow: Successful defect prediction models are integrated

into the software development process. They assist development teams during the quality

assurance phase by highlighting high-risk areas that need more rigorous testing [24-28]. This

integration helps in strategically allocating resources, prioritizing testing efforts, and ensuring

that critical areas receive the necessary attention.

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 28

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

7. Continuous Improvement: Defect prediction is an iterative process. As new data becomes

available and the software evolves, models need to be regularly retrained and refined to

maintain their effectiveness. Continuous improvement ensures that the models adapt to

changes in the software and remain relevant in predicting defects.

Role in the Testing Phase of SDLC

During the Testing Phase of the Software Development Life Cycle (SDLC), defect prediction plays a

vital role. It helps identify which modules are most likely to contain errors and therefore require

more detailed testing [29-33]. By focusing on these high-risk areas, development teams can use their

resources more efficiently and adhere to project constraints. While predicting defect-prone modules

can be challenging, accurate predictions can significantly reduce the costs associated with defect

detection and correction [34-36]. Automated tools that accurately forecast defect locations and guide

testing efforts have the potential to save substantial amounts of money annually and improve overall

software quality.

2. REVIEW OF LITERATURE

Zain et.al., (2022). Developing successful software with no defects is one of the main goals of

software projects. In order to provide a software project with the anticipated software quality, the

prediction of software defects plays a vital role. Machine learning, and particularly deep learning,

have been advocated for predicting software defects, however both suffer from inadequate accuracy,

overfitting, and complicated structure. In this paper, we aim to address such issues in predicting

software defects. We propose a novel structure of 1- Dimensional Convolutional Neural Network

(1D-CNN), a deep learning architecture to extract useful knowledge, identifying and modelling the

knowledge in the data sequence, reduce overfitting, and finally, predict whether the units of code are

defects prone. We design large-scale empirical studies to reveal the proposed model’s effectiveness

by comparing four established traditional machine learning baseline models and four state-of-the-art

baselines in software defect prediction based on the NASA datasets. The experimental results

demonstrate that in terms of f-measure, an optimal and modest 1DCNN with a dropout layer

outperforms baseline and state-of-the-art models by 66.79% and 23.88%, respectively, in ways that

minimize overfitting and improving prediction performance for software defects. According to the

results, 1D-CNN seems to be successful in predicting software defects and may be applied and

adopted for a practical problem in software engineering. This, in turn, could lead to saving software

development resources and producing more reliable software.

Rathore et.al., (2022). Imbalanced software fault datasets, having fewer faulty modules than the

nonfaulty modules, make accurate fault prediction difficult. It is challenging for software

practitioners to handle imbalanced fault data during software fault prediction (SFP). Earlier, several

researchers have applied oversampling techniques such as synthetic minority oversampling

techniques and others for imbalanced learning in SFP. However, most of these techniques resulted in

overfitted prediction models. This article presents generative oversampling methods to handle

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 29

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

imbalanced data problems in the SFP. Using the generative adversarial network (GAN) based

approach, the presented methods generate synthetic samples of the faulty modules to balance the

proportion of faulty and nonfaulty modules in the fault datasets. Further, SFP models are built on the

processed fault datasets using different machine learning techniques.

Farid et.al., (2021). In recent years, the software industry has invested substantial effort to improve

software quality in organizations. Applying proactive software defect prediction will help developers

and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional

software defect prediction models concentrate on traditional features of source code including code

complexity, lines of code, etc. However, these features fail to extract the semantics of source code. In

this research, we propose a hybrid model that is called CBIL. CBIL can predict the defective areas of

source code. It extracts Abstract Syntax Tree (AST) tokens as vectors from source code. Mapping

and word embedding turn integer vectors into dense vectors. Then, Convolutional Neural Network

(CNN) extracts the semantics of AST tokens.

Wang, T., & Li, W. H. (2010). While there was much disagreement over the usefulness of

employing static code features to train a defect predictor, software defect predictions were

undeniably a powerful tool for increasing testing productivity and software quality. Defect forecasts

had previously included a number of data mining techniques. A defect predictor based on Naive

Bayes theory was found to exist in several forms, and the difference estimate technique and

algorithm complexity of each version were examined. By completing prediction performance

assessment, Multivariants Gauss Naive Bayes (MvGNB) was determined to be the best. Next, this

model was contrasted with the J48 decision tree learner. It was concluded from experiment findings

on MDP benchmarking datasets that MvGNB would be helpful for fault predictions.

Wang et.al., (2010). Many data mining applications relied heavily on feature selection since it was

realized that using a single technique for subset selection might result in local optima. As a

countermeasure, feature selection method ensembles were investigated, with the goal of integrating

many approaches instead of depending on one. A comprehensive empirical investigation was carried

out that looked at 17 different ensembles of feature ranking algorithms, including the signal-to-noise

filter, 11 threshold-based techniques, and six commonly used methods. With 16 real-world software

measurement datasets of different sizes, 13,600 classification models were built by the research.

Zheng, J. (2010). In order to anticipate software defects, the research examined the performance of

three cost-sensitive boosting algorithms. Its main objective was to categorize software modules into

classes that were prone to defects and those that were not. The high expense of incorrectly

categorizing defective modules as opposed to non-defective ones was the goal of these techniques.

The first approach improved the accuracy of identifying modules that were prone to defects by

adjusting the classification threshold via the use of threshold moving. The threshold moving

approach was shown to be the best appropriate for building cost-sensitive software defect prediction

models via evaluation utilizing NASA project datasets, especially for projects that were produced

using object-oriented language.

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 30

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Khoshgoftaar et.al., (2010). Choosing the best characteristics for machine learning and dealing with

unbalanced data presented difficulties for the data mining and machine learning communities. This

research presented a procedure incorporating feature selection and data sample approaches. It was

focused on the software engineering sector, specifically software quality prediction. In order to

identify and model features for software defect prediction, four scenarios involving the comparison

of original and sampled data were investigated. Defect prediction models showed consistent

performance regardless of whether training data was original or sampled, according to case study

results using nine software measurement datasets. Models based on feature selection from sampled

data outperformed those based on original data.

Yan et.al., (2010). By using software metrics to anticipate the number of defects in software

modules, regression methods were used to improve the quality of the program. A unique approach to

estimating software defect counts was presented in the study: the use of fuzzy support vector

regression (FSVR). The regressor's fuzzification input demonstrated proficiency in managing

datasets with imbalanced software metrics. Based on experiment findings with the MIS and

RSDIMU datasets, a comparative study with the support vector regression technique showed that

FSVR offered reduced mean squared error and greater accuracy in forecasting the total number of

defects for modules with a considerable defect load.

Table 2.1: Systematic Reviews and Methodology

Author(S)

And Year

Research Key Methodology Findings

Wang, T., &

Li, W. H.

(2010)

Software defect prediction

using static code attributes

Analyzed various versions of

Naive Bayes-based defect

predictors and compared

Multivariants Gauss Naive

Bayes (MvGNB) with the

decision tree learner J48

using benchmarking datasets

MvGNB was found to be the

most effective for defect

prediction, improving

software quality and testing

efficiency

Wang et.al.,

(2010)

Feature selection in data

mining applications

Conducted an empirical

study examining 17

ensembles of feature ranking

techniques using 16 software

measurement datasets,

resulting in 13,600

classification models

Ensembles with very few

rankers were more effective

than those with many or all

rankers, highlighting the

effectiveness of ensemble

methods

Zheng, J.

(2010)

Cost-sensitive boosting

algorithms for software

defect prediction

Investigated three cost-

sensitive boosting algorithms

focusing on misclassification

costs using NASA project

datasets

Threshold-moving algorithm

was most suitable for cost-

sensitive software defect

prediction, especially for

object-oriented projects

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 31

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Khoshgoftaar

et.al., (2010)

Feature selection and data

sampling in software

defect prediction

Explored four scenarios

comparing original and

sampled data for feature

selection and modeling using

nine software measurement

datasets

Models constructed using

feature selection from

sampled data consistently

outperformed those based

solely on original data,

demonstrating robust

performance in defect

prediction.

Yan et.al.,

(2010)

Enhancing software

quality using regression

techniques

Proposed Fuzzy Support

Vector Regression (FSVR)

for predicting software

defect numbers, comparing it

with support vector

regression using MIS and

RSDIMU datasets

FSVR yielded lower mean

squared error and higher

accuracy in predicting defect

numbers for modules with

substantial defect loads

Rawat and Dubey (2012) Certain faults were inevitable throughout software development, despite

careful planning, comprehensive documentation, and efficient process management; this eventually

resulted in a drop in quality and possible project failure. Even though it cost a lot of money,

deliberate efforts were necessary to regulate and limit flaws in the competitive environment of the

time. It also demonstrated how several defect prediction algorithms were put into practice and how

successful they were in lowering the total number of faults.

Ma et.al., (2012). Models trained on cross-company data received less attention than within-company data

when it came to software fault prediction. There were difficulties in translating within-company models into

real-world situations since there were few local data repositories. A new technique for cross-company defect

prediction called Transfer Naive Bayes (TNB) was devised when it was realized that transfer learning may

help close this gap. In contrast to earlier methods, TNB estimated test data distribution and transferred cross-

company data insights into weighted training instances by using information from all relevant characteristics

in the training data. The experiments were carried out on a variety of datasets from NASA and Turkish

software repositories. The research came to the conclusion that when local training data is scarce, using

information from various distribution training data at the feature level may be helpful. This presents a

potential way to maximize resource allocation in software testing procedures and lower related expenses.

Li et.al., (2012). Predicting software defects was thought to be a useful tool for improving our comprehension

and management of software quality; nevertheless, most approaches relied on project history. However,

effective defect prediction was hampered by the lack of such data for new projects and certain businesses. In

order to address this, the study suggested sample-based approaches and supported the testing and selection of

a tiny proportion of modules inside complex software systems. There was a description of three approaches

for selecting samples: The study presented ACoForest, a unique active semi supervised learning technique that

selects modules most useful for creating a reliable prediction model. The usefulness of these approaches was

shown by experimental findings using PROMISE datasets, indicating that they may find use in industrial

practice.

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 32

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Sun et.al., (2012). In the past, there has been a lot of interest in the use of classification techniques to

forecast software error proneness using static code properties. Software defect data's intrinsic

classimbalance posed a significant difficulty, which led to the use of a number of techniques

including cost-sensitive learning, boosting, bagging, and sampling to address it. But because of

changes in the initial data distribution, these traditional methods often ran into issues including

overfitting, unanticipated mistakes, and the loss of important information. In response, the study

introduced a novel methodology that initially transformed imbalanced binary-class data into balanced

multiclass data, followed by the implementation of a specific coding strategy to develop a defect

predictor. Experimental results, conducted across 14 NASA datasets using four classification

algorithms, three data coding schemes, and six common imbalance data handling techniques,

indicated that the new approach generally outperformed others, particularly when employing a one-

against-one coding scheme.

Pelayo, L., & Dick, S. (2012). Several studies have employed machine learning techniques to tackle

the challenge of predicting software defects based on software metrics. But as a result of skewness in

defect prediction datasets, predictions for the minority defective class were often less accurate—a

problem referred to as "learning from imbalanced datasets." Using Analysis of Variance on a variety

of datasets, this paper examined two important stratification options (under and oversampling) for

software fault prediction. Under sampling had a significant main impact and an interaction effect

with oversampling, both at α = 0.05, according to the research, but oversampling did not have a

significant main effect. The results advance our knowledge of efficient stratification strategies for

resolving class imbalance in software fault prediction.

3. CONCLUSION AND FUTURE SCOPE

This work is a major step toward the prediction of software defects using deep learning methods,

particularly CNNs. Although the models showed encouraging performance metrics and indicated

how they may be used in software engineering, issues like noise, unbalanced data, and

interpretability of the model still need to be further investigated and improved. For defect prediction

models to become more dependable, scalable, and applicable in actual software development

settings, these issues must be resolved. We can clear the way for more precise, effective, and

significant software defect prediction solutions by advancing methods, working across disciplines,

and developing and improving current procedures.

By means of this thorough study, we add to the current conversation on the nexus between software

engineering and machine learning, hoping to provide practitioners with knowledge and instruments

that improve software development and quality. The development of deep learning in software defect

prediction has the potential to completely change the way we approach software maintenance and

quality assurance in the future, eventually producing more reliable and robust software systems.

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 33

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

REFERENCES

1. Wahono, R. S. (2015). A systematic literature review of software defect prediction. Journal

of software engineering, 1(1), 116.

2. Rawat, M. S., & Dubey, S. K. (2012). Software defect prediction models for quality

improvement: a literature study. International Journal of Computer Science Issues

(IJCSI), 9(5), 288.

3. Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using ensemble

learning on selected features. Information and Software Technology, 58, 388402.

4. Okutan, A., & Yıldız, O. T. (2014). Software defect prediction using Bayesian

networks. Empirical Software Engineering, 19, 154181.

5. Nam, J. (2014). Survey on software defect prediction. Department of Computer Science and

Engineering, The Hong Kong University of Science and Technology, Tech. Rep.

6. He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2015). An empirical study on software defect

prediction with a simplified metric set. Information and Software Technology, 59, 170190.

7. Jing, X. Y., Ying, S., Zhang, Z. W., Wu, S. S., & Liu, J. (2014, May). Dictionary learning

based software defect prediction. In Proceedings of the 36th international conference on

software engineering (pp. 414423).

8. Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect

prediction. IEEE Transactions on Reliability, 62(2), 434443.

9. Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for cross company software

defect prediction. Information and Software Technology, 54(3), 248256.

10. Li, M., Zhang, H., Wu, R., & Zhou, Z. H. (2012). Sample based software defect prediction

with active and semi supervised learning. Automated Software Engineering, 19, 201230.

11. Sun, Z., Song, Q., & Zhu, X. (2012). Using coding-based ensemble learning to improve

software defect prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 42(6), 18061817.

12. Arora, I., Tetarwal, V., & Saha, A. (2015). Open issues in software defect

prediction. Procedia Computer Science, 46, 906912.

13. Wang, T., & Li, W. H. (2010, December). Naive bayes software defect prediction model.

In 2010 International conference on computational intelligence and software

engineering (pp. 14). Ieee.

14. Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher bias: The use of machine learning in

software defect prediction. IEEE Transactions on Software Engineering, 40(6), 603616.

15. Czibula, G., Marian, Z., & Czibula, I. G. (2014). Software defect prediction using relational

association rule mining. Information Sciences, 264, 260278.

16. Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J., & Riquelme, J. C. (2014, May).

Preliminary comparison of techniques for dealing with imbalance in software defect

prediction. In Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering (pp. 110).

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 34

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

17. Ren, J., Qin, K., Ma, Y., & Luo, G. (2014). On software defect prediction using machine

learning. Journal of Applied Mathematics, 2014.

18. Arar, Ö. F., & Ayan, K. (2015). Software defect prediction using cost sensitive neural

network. Applied Soft Computing, 33, 263277.

19. Yang, X., Tang, K., & Yao, X. (2014). A Learning Works approach to software defect

prediction. IEEE Transactions on Reliability, 64(1), 234246.

20. Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010, December). A comparative study of

ensemble feature selection techniques for software defect prediction. In 2010 Ninth

International Conference on Machine Learning and Applications (pp. 135140). IEEE.

21. Liu, S., Chen, X., Liu, W., Chen, J., Gu, Q., & Chen, D. (2014, July). FECAR: A feature

selection framework for software defect prediction. In 2014 IEEE 38th Annual Computer

Software and Applications Conference (pp. 426435). IEEE.

22. Shukla, H. S., & Verma, D. K. (2015). A review on software defect prediction. International

Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 4(12),

43874394.

23. Zheng, J. (2010). Cost sensitive boosting neural networks for software defect

prediction. Expert Systems with Applications, 37(6), 45374543.

24. Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2011, April). The misuse of the

NASA metrics data program data sets for automated software defect prediction. In 15th

annual conference on evaluation & assessment in software engineering (EASE 2011) (pp.

96103). IET.

25. Pelayo, L., & Dick, S. (2012). Evaluating stratification alternatives to improve software

defect prediction. IEEE transactions on reliability, 61(2), 516525.

26. Bell, R. M., Ostrand, T. J., & Weyuker, E. J. (2013). The limited impact of individual

developer data on software defect prediction. Empirical Software Engineering, 18, 478505.

27. Agarwal, S., & Tomar, D. (2014). A feature selection-based model for software defect

prediction. assessment, 65.

28. Khoshgoftaar, T. M., Gao, K., & Seliya, N. (2010, October). Attribute selection and

imbalanced data: Problems in software defect prediction. In 2010 22nd IEEE International

conference on tools with artificial intelligence (Vol. 1, pp. 137144). IEEE.

29. Vashisht, V., Lal, M., & Sureshchandar, G. S. (2015). A framework for software defect

prediction using neural networks. Journal of Software Engineering and Applications, 8(08),

384.

30. Wang, H., Khoshgoftaar, T. M., Van Hulse, J., & Gao, K. (2011). Metric selection for

software defect prediction. International Journal of Software Engineering and Knowledge

Engineering, 21(02), 237257.

31. Wahono, R. S., Herman, N. S., & Ahmad, S. (2014). A comparison framework of

classification models for software defect prediction. Advanced Science Letters, 20(1011),

19451950.

http://www.ijamsr.com/

Vol 6, Issue 11, 2023 Impact Factor: 5.355 DOI: https://doi.org/10.31426/ijamsr.2023.6.11.6914

IJAMSR 6 (11) November 2023 www.ijamsr.com 35

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

32. Punitha, K., & Chitra, S. (2013, February). Software defect prediction using software metrics

A survey. In 2013 International Conference on Information Communication and Embedded

Systems (ICICES) (pp. 555558). IEEE.

33. Liu, M., Miao, L., & Zhang, D. (2014). Two stage cost sensitive learning for software defect

prediction. IEEE Transactions on Reliability, 63(2), 676686.

34. Jindal, R., Malhotra, R., & Jain, A. (2014, October). Software defect prediction using neural

networks. In Proceedings of 3rd International Conference on Reliability, Infocom

Technologies and Optimization (pp. 16). IEEE.

35. Wahono, R. S., & Herman, N. S. (2014). Genetic feature selection for software defect

prediction. Advanced Science Letters, 20(1), 239244.

36. Wang, J., Shen, B., & Chen, Y. (2012, August). Compressed C4. 5 models for software defect

prediction. In 2012 12th International Conference on quality software (pp. 1316). IEEE.

37. Zain, Z. M., Sakri, S., Asmak Ismail, N. H., & Parizi, R. M. (2022). Software Defect

Prediction Harnessing on Multi 1-Dimensional Convolutional Neural Network

Structure. Computers, Materials & Continua, 71(1).

38. Rathore, S. S., Chouhan, S. S., Jain, D. K., & Vachhani, A. G. (2022). Generative

oversampling methods for handling imbalanced data in software fault prediction. IEEE

Transactions on Reliability, 71(2), 747-762.

39. Farid, A. B., Fathy, E. M., Eldin, A. S., & Abd-Elmegid, L. A. (2021). Software defect

prediction using hybrid model (CBIL) of convolutional neural network (CNN) and

bidirectional long short-term memory (Bi-LSTM). PeerJ Computer Science, 7, e739.

http://www.ijamsr.com/

